MARK YOUR CALENDAR

Public comment period: March 5 to April 4, 2012

Public meeting: Thursday, March 15th at 5:30 p.m. at the Attalla Community Center, 115 Case Ave., Attalla, Ala.

The U. S. Army Corps of Engineers will accept written comments on the Proposed Plan during the public comment period. Comments or questions concerning this Proposed Plan, or the preferred alternative, should be addressed to:

U. S. Army Corps of Engineers, Mobile District
Attn: Melissa L. Shirley, P.E., EN-GE
P.O. Box 2288
Mobile, AL 36628-0001
109 St. Joseph Street
Mobile, AL 36602

For more information, see the Administrative Record, located at the U. S. Army Corps of Engineers, Mobile District Office, at 109 St. Joseph Street, Mobile, Alabama, and available for review by the public from 0900 – 1300. It is also available on the web at the Gadsden Public Library, 254 College Street, Gadsden, Alabama. Please contact the following:

U. S. Army Corps of Engineers, Mobile District
109 St. Joseph Street
Mobile, AL 36602
Point of Contact: Melissa L. Shirley, P.E.
Telephone: (251) 690-2616
Toll Free: 1-800-543-2010 Extension 2616
Fax: (251) 690-2030
Email: Melissa.L.Shirley@usace.army.mil
TABLE OF CONTENTS

LIST OF FIGURES.. ii
LIST OF TABLE.. ii
ACRONYMS ... ii
1.0 INTRODUCTION .. 1
2.0 SITE BACKGROUND 1
3.0 SITE CHARACTERISTICS............................. 2
4.0 SCOPE AND ROLE OF RESPONSE ACTIONS 3
5.0 SUMMARY OF SITE RISKS 3
6.0 REMEDIAL ACTION OBJECTIVES.............. 3
7.0 SUMMARY OF REMEDIAL ALTERNATIVES 3
 7.1 Alternative 1: No Action 4
 7.2 Alternative 2: Removal 4
8.0 EVALUATION OF ALTERNATIVES 4
 8.1 Protection of Human Health and the Environment 5
 8.2 Compliance with ARARs 5
 8.3 Short-Term Effectiveness 5
 8.4 Long-Term Effectiveness 5
 8.5 Reduction of Volume, Toxicity, and Mobility 5
 8.6 Implementability .. 6
 8.7 Cost ... 6
9.0 PREFERRED ALTERNATIVE 6
10.0 COMMUNITY PARTICIPATION 8
11.0 REFERENCES (AVAILABLE IN THE ADMINISTRATIVE RECORD) 8
12.0 GLOSSARY OF TERMS 8

LIST OF FIGURES

Figure 1 Location of the Former KD Range1
Figure 2 Summary of Lead Results in Surface Soil2
Figure 3 Area to be Excavated Under Alternative 2 4
Figure 4 Soil Sampling and Removal Under the Preferred Alternative7

LIST OF TABLE

Table 1 Summary of Lead Results in Surface Soil2

ACRONYMS

ADEM Alabama Department of Environmental Management
AMSL above mean sea level
AOC area of concern
ARAR applicable or relevant and appropriate requirement
CERCLA Comprehensive Environmental Response, Compensation, and Liability Act
CFR Code of Federal Regulations
COC constituent of concern
DoD U. S. Department of Defense
EPA U. S. Environmental Protection Agency
ERA ecological risk assessment
ft feet
FFS focused feasibility study
FUDS Formerly Used Defense Sites
HQ hazard quotient
IEUBK Integrated Exposure Uptake Biokenetic (model)
KD Known-Distance
mi miles
NCP National Oil and Hazardous Substances Pollution Contingency Plan
O&M operation and maintenance
PSV preliminary screening value
RAO remedial action objective
RI remedial investigation
ROD Record of Decision
SI site investigation
TCLP Toxicity Characteristic Leaching Procedure
TSDF treatment, storage, and disposal facility
USACE U. S. Army Corps of Engineers
1.0 INTRODUCTION

This Proposed Plan identifies the preferred alternative for addressing contaminated soil at the former Camp Sibert, near Gadsden, Alabama, and provides the rationale for this preference. In addition, this Proposed Plan includes summaries of other alternatives evaluated for use at this site. This document is issued by the U.S. Army Corps of Engineers (USACE), Mobile District, which is the lead agency for site activities, and the Alabama Department of Environmental Management (ADEM), which is the regulatory agency. USACE, in consultation with ADEM, will select a final remedy for the site after reviewing and considering all information submitted during the 30-day public comment period and the public meeting.

USACE is required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 117(a) to issue this Proposed Plan and seek public comment and participation. This Proposed Plan summarizes information that can be found in greater detail in the Focused Feasibility Study (FFS) Report (SAIC 2008b), Addendum to the FFS Report (SAIC 2009), and other documents contained in the Administrative Record file for this site. USACE and ADEM encourage the public to review these documents to gain a more comprehensive understanding of the site and investigation activities that have been conducted at the site. Public input to this Proposed Plan will be documented in a Responsiveness Summary Report that will be included in a Record of Decision (ROD) that documents selection of the remedial action.

2.0 SITE BACKGROUND

The former Camp Sibert is located in Attalla, Alabama, about 5 miles (mi) west of the city of Gadsden. The site was used by the U.S. Army between 1942 and 1945 for training in chemical warfare and was subsequently transferred back into private ownership in 1948. Single-family homes and multiple-family dwellings now occupy much of the former Camp Sibert site. Between January and April 2007, a remedial investigation (RI) was conducted to identify possible sources of soil and groundwater contamination (excluding contamination caused by military munitions or chemical warfare materials), the extent of the contamination, and the potential risks to human health or the environment. One of the specific areas of concern (AOCs) investigated included a former Known-Distance (KD) Range, which was found to have high levels of lead in surface soil.

The former KD Range is located generally along and west of Pleasant Valley Road (Figure 1). Several ranges (numbered 1 through 7) were used for small arms training at the former Camp Sibert. During training sessions, small-caliber weapons were fired at paper targets. The AOC, therefore, includes the down-range impact area for small-caliber projectiles. Lead and small-caliber ordnance explosive wastes are the hazardous materials potentially associated with the former KD Range.

Current land use is residential and industrial. Future land use is designated to remain as such.

The topography of the former Camp Sibert is relatively flat, with elevations ranging from 545 to 585 feet (ft) above mean sea level (AMSL). Most of the former KD Range lies above the elevation of 580 ft AMSL. The eastern portion of the former KD Range drains to Dry Creek, which is a drainage canal that is fed by a system of roadside ditches. The western portion of the former KD Range drains toward Rook Creek.

The former Camp Sibert is underlain by moderately thick, clay-rich soil that has formed from the underlying weathered shale and limestone. Bedrock was typically encountered from 10 to 20 ft below ground surface. Groundwater is localized and may be encountered at varying depths because of the low
conductivity of the clay-rich soil. The groundwater surface generally mirrors the overlying topography, from a maximum of 585 ft AMSL in the northwest corner of the former KD Range to approximately 560 ft AMSL in the southeast corner. A groundwater divide extends the length of the former KD Range, with groundwater flowing towards the east-northeast in the northwestern part of the KD Range and flow to the southwest in the southern part of the range.

3.0 SITE CHARACTERISTICS

The nature and extent of contamination have been defined through a series of field investigations. In 1994, an initial Phase I site investigation (SI) was conducted to determine the presence of hazardous and toxic waste contamination (M&E 1996). In 2000, a Phase II SI was conducted to fill data gaps (M&E 2005). Surface soil samples were collected over a pre-determined grid that encompasses 39 KD Range sections within former small arms firing ranges 1 through 7. Iron, lead, manganese, and mercury were detected in composite samples from some of the range areas at concentrations exceeding screening criteria. In addition, four monitoring wells were installed; metals were found at concentrations below screening criteria in groundwater.

In 2007, Science Applications International Corporation conducted an RI to explore the extent of contamination and potential risks to human health or the environment (SAIC 2008a). Discrete surface soil samples were collected within 10 of the 39 KD Range sections, and additional monitoring wells were installed to further define the groundwater surface, flow directions, and extent of any contamination.

Concentrations of chemicals detected in samples were compared to ADEM preliminary screening values (PSVs) to focus on contaminants of potential concern. Results indicated elevated lead concentrations in surface soil in or near the impact berms within three sections of ranges 1 and 2, referred to as KD Range sections KD-1N, KD-1S, and KD-2N. Results are shown in Figure 2 and are summarized in Table 1.

- **KD Range section KD-1N.** Twenty-five surface soil samples were collected during the 2007 RI and analyzed for iron, lead, and mercury. One composite sample was collected during the 2000 Phase II SI. Lead was the only metal detected above its PSV and background criterion. While 17 of the 26 samples exceeded the background criterion, only the maximum detection (15,500 mg/kg) at location KD-1N-12 exceeded the PSV (400 mg/kg). Because sample KD-1N-12 was taken directly out of the impact berm, lead is likely unit-related.

- **KD Range section KD-1S.** Twenty-three surface soil samples were collected during the 2007 RI and analyzed for iron and lead. One composite sample was collected during the 2000 Phase II SI. Lead was the only metal detected above its PSV and background criterion. While 18 of the 24 samples exceeded the background criterion, 4 sample locations (KD-1S-12, KD-1S-13, KD-1S-14, and KD-COMP02) exceeded the PSV. Because samples KD-1S-12 through KD-1S-14 were taken from the impact berm and KD-COMP02 is a composite from across the unit, lead is likely unit-related.

- **KD Range section KD-2N.** Twenty-two surface soil samples were collected during the 2007 RI and analyzed for iron, lead, and mercury. One composite sample was collected during the 2000

![Figure 2. Summary of Lead Results in Surface Soil](image)

Table 1. Summary of Lead Results in Surface Soil

<table>
<thead>
<tr>
<th>KD Range Section</th>
<th>Results >Detect Limit</th>
<th>Minimum Detect (mg/kg)</th>
<th>Maximum Detect (mg/kg)</th>
<th>Average Result (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KD-1N</td>
<td>26/26</td>
<td>15.2</td>
<td>15,500</td>
<td>631</td>
</tr>
<tr>
<td>KD-1S</td>
<td>24/24</td>
<td>14.5</td>
<td>30,700</td>
<td>1,950</td>
</tr>
<tr>
<td>KD-2N</td>
<td>23/23</td>
<td>14.6</td>
<td>1,560</td>
<td>149</td>
</tr>
</tbody>
</table>

KD = Known distance.
Phase II SI. Lead was the only metal detected above its PSV and background criterion. While 14 of the 23 samples exceeded the background criterion, only 3 sample locations (KD-2N-08, KD-2N-09, and KD-2N-10) exceeded the PSV. Because samples KD-2N-08 through KD-2N-10 were taken from the impact berm, lead is likely unit-related.

Subsurface soil samples were collected from six borings. Although the maximum concentrations of arsenic and manganese exceeded PSVs and background criteria, the average concentrations for arsenic and manganese were similar to their background criteria. Therefore, it is unlikely that arsenic and manganese in subsurface soil are unit-related. In addition, the risk assessment evaluation of effect of these non-carcinogens on target organs resulted in a hazard index below 1, so arsenic and manganese were not included as unit related chemicals of concern.

Groundwater samples were collected from six monitoring wells. Vanadium was the only metal detected above its PSV; however, the average vanadium concentration was less than its PSV. Although lead was detected in surface soil at relatively high concentrations, lead was not found in groundwater at concentrations exceeding background or the PSV. Therefore, there are no metals of concern in groundwater.

4.0 SCOPE AND ROLE OF RESPONSE ACTIONS

Per the U. S. Department of Defense (DoD) Management Guidance for the Defense Environmental Restoration Program, activities under the Formerly Used Defense Sites (FUDS) program must be conducted in accordance with the provisions of CERCLA. Pursuant to Executive Order 12580, DoD is the lead agency at FUDS properties when executing a DoD response action associated with DoD hazards. USACE, Mobile District is the lead agency for the former Camp Sibert and will provide the opportunity for ADEM to review and comment on the Proposed Plan.

In accordance with guidance under the CERCLA program, the overall site strategy of USACE, Mobile District and ADEM is to reduce any unacceptable human health risks to acceptable levels by mitigating direct exposure to site contaminants and preventing migration of site contaminants to off-site areas. These actions will also reduce exposures of environmental receptors (such as terrestrial and aquatic fauna or flora). Therefore, this Proposed Plan presents site risks identified during the RI and alternatives for remediation of the three KD Range sections impacted by lead in surface soil.

5.0 SUMMARY OF SITE RISKS

A human health risk assessment was conducted for the KD Range (SAIC 2008a). Constituents of concern (COCs) were identified based on evaluating a residential receptor scenario (adult and child). No carcinogenic or non-carcinogenic COCs were identified for residential exposures to soil except for lead. Lead was evaluated using the Integrated Exposure Uptake Biokinetic (IEUBK) model, which indicated that elevated lead concentrations in range sections KD-1N and KD-1S could result in potential adverse health effects in a resident child.

A screening level ecological risk assessment (ERA) was also conducted for the KD Range (SAIC 2008a). Constituents of ecological concern were identified by comparing predicted concentrations of chemicals in terrestrial plants and animals to toxicity endpoints to compute hazard quotients (HQs). Although chromium, cobalt, and thallium had high HQs (>50), their average concentrations were less than the background criterion and, therefore, were not considered site-related. At KD Range 1, lead has HQs higher than 100 and poses a potential risk for small mammals (represented by the short-tailed shrews) due to ingestion of food and soil. Lead is likely site-related at KD Range 1, exceeding background by several orders of magnitude.

6.0 REMEDIAL ACTION OBJECTIVES

Remedial action objectives (RAOs) were developed to address the threats to human health and the environment that were identified in the risk assessments. Based on the findings of the RI and the risk assessments, the following RAO was identified: to prevent direct contact with lead in surface soil at concentrations that could pose unacceptable risk to a resident child or small mammals. A remediation level of 900 mg/kg was selected in the FFS as being appropriate for protection of a child resident based on IEUBK modeling of acceptable blood lead levels. The selected remediation level of 900 mg/kg is also considered appropriate for protection of small mammals based on the uncertainties noted in the ERA; namely, the conservative use of no observed adverse effect levels for calculating risks and the assumption of 100% bioavailability of the lead in soil. The 900-mg/kg value falls within the U.S. Environmental Protections Agency’s (EPA’s) final rule under 40 Code of Federal Regulations (CFR) Part 745 on...

7.0 SUMMARY OF REMEDIAL ALTERNATIVES

An FFS was conducted to identify and evaluate alternatives for remediation of the lead contamination in surface soil (SAIC 2008b). Four technologies were identified in the FFS and screened against the criteria of effectiveness, implementability, and cost. The alternatives for remediation that were retained following the technology screening were no action and removal of the contaminated soil with off-site disposal. These two alternatives are described below.

7.1 Alternative 1: No Action

A no action alternative is required by the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) to provide a baseline against which other alternatives can be compared. The no action alternative would provide no access controls, containment, removal, or other actions for protection of a resident child or small mammals against contaminated surface soil. The cost to implement Alternative 1 is $0.

7.2 Alternative 2: Removal

Because the soil lead contamination at the former KD Range has been found to be present only within the impact berms, soil removal was evaluated to deal with the site topography, limited contaminant distribution, and residential land use. Soil removal using conventional mechanical excavation has consistently proven reliable and effective for permanently removing contamination. The approximate area of lead-contaminated soil to be excavated (exceeding 900 mg/kg) is shown on Figure 3. The area extends over portions of the former impact berm within KD Range sections KD-1N, KD-1S, and KD-2N, covering an area approximately 50 ft wide by 700 ft long. Assuming a depth of contamination of 1 ft, the volume of lead-contaminated soil is estimated at 1,296 yd³. The capital cost to implement the removal alternative is estimated at $922,000; there would be no operation and maintenance (O&M) cost.

8.0 EVALUATION OF ALTERNATIVES

Nine evaluation criteria are statutory criteria required by the NCP (40 CFR 300) and the Guidance for Conducting Remedial Investigations and Feasibility Studies under the Comprehensive Environmental Response, Compensation, and Liability Act (EPA 1988). These nine criteria are segregated into three groups and are briefly described below.

Threshold criteria are requirements that each alternative must meet for selection. There are two threshold criteria, as listed below:

- **Overall Protection of Human Health and the Environment** determines whether an alternative eliminates, reduces, or controls threats to public health and the environment.
- **Compliance with Applicable or Relevant and Appropriate Requirements (ARARs)** evaluates whether the alternative meets federal and state environmental statutes, regulations, and other requirements that pertain to the site, or whether a waiver is justified.

Balancing criteria are used to compare trade-offs among the alternatives. There are five balancing criteria, as listed below:

- **Short-Term Effectiveness** considers the length of time needed to implement an alternative and the
risks the alternative poses to workers, residents, and the environment during implementation.

- **Long-Term Effectiveness and Permanence** considers the ability of an alternative to maintain protection of human health and the environment over time.

- **Reduction of Volume, Toxicity, and Mobility through Treatment** evaluates an alternative’s use of treatment to reduce the harmful effects of principal contaminants, their ability to move in the environment, and the amount of contamination present.

- **Implementability** considers the technical and administrative feasibility of implementing the alternative, including factors such as the relative availability of goods and services.

- **Cost** includes estimated capital and annual O&M costs. Cost estimates are expected to be accurate within a range of +50 to -30%.

Modifying criteria are considered based on public comment on the Proposed Plan. There are two modifying criteria, as listed below:

- **State Acceptance** considers whether the state agrees with the USACE analyses and recommendations, as described in the FFS and this Proposed Plan.

- **Community Acceptance** considers whether the local community agrees with the USACE analyses and preferred alternative. Comments received on the Proposed Plan are an important indicator of community acceptance.

8.1 Protection of Human Health and the Environment

Only the removal alternative would be protective of human health and the environment. At present, there is potential risk to a resident child and to small mammals due to direct contact/ingestion with lead-contaminated soil. The no action alternative would not eliminate direct contact with contaminated surface soil and would not achieve RAOs. The removal alternative would be a permanent remedy that would achieve RAOs and would adequately protect human health and the environment in both the short and long term.

8.2 Compliance with ARARs

The no action alternative would not comply with ARARs. The removal alternative would comply with the and action-specific ARARs, including:

- Disturbance of ground cover that results in potential transport of sediment due to storm water runoff (40 CFR 122.26).

- Generation and management of a hazardous waste or environmental medium that contains a hazardous waste (40 CFR Part 262).

- Storage of hazardous waste in containers (40 CFR 264 Subpart I).

It is anticipated that the removal alternative would be designed and conducted in such a manner as to fully comply with all identified ARARs.

8.3 Short-Term Effectiveness

There would be no short-term impacts associated with the no action alternative. Short-term impacts resulting from implementation of the removal alternative would include potential contaminated dust exposure; general construction risks to workers (e.g., heavy equipment hazards, fall and trip hazards, and heat stress); and traffic impacts during hauling of contaminated soil to a treatment, storage, and disposal facility (TSDF). Minor impact to the environment would occur due to removal of the existing vegetation until permanent vegetation has been re-established. RAOs would be met within 6 months under the removal alternative.

8.4 Long-Term Effectiveness

The no action alternative would not achieve remediation levels and, because the lead is relatively immobile, residual risks would not be reduced over the long term. Removal of the surface soil would effectively eliminate direct contact with lead-contaminated soil, reduce residual risks to acceptable levels, and permanently meet the RAOs with no requirement for long-term O&M.

8.5 Reduction of Volume, Toxicity, and Mobility Through Treatment

There would be no reduction in toxicity, mobility, or volume as a result of implementing the no action alternative. Under the removal alternative, the volume of contaminated soil at the site would be
reduced by 1,670 yd³, thus permanently removing 100% of the lead-contaminated soil above the remediation level for the site; however, there would be no net reduction of volume because no treatment would be performed prior to shipment to the TSDF. At the TSDF, soils that are determined to be a characteristic hazardous waste must be treated to meet disposal standards prior to actual placement within the landfill. Treatment of lead-contaminated soil will be accomplished through stabilization or encapsulation, which will reduce the mobility of contaminants within the soil media. The disposal of the treated soils within a hazardous waste landfill will effectively isolate the contaminants from the environment reducing the toxicity associated with contaminant leaching and migration.

8.6 Implementability

The no action alternative does not involve construction and is, therefore, readily implementable. Soil excavation is a technically feasible alternative because it is a conventional construction technology with few impediments to implementation. Implementability would require appropriate waste characterization and manifesting for ultimate disposal at a permitted hazardous waste TSDF, one of which is available within only 150 mi of the site.

8.7 Cost

The capital and O&M cost to implement the no action alternative is 0$. The capital cost to implement the removal alternative to the revised remediation level is estimated at 922,000$; there would be no O&M costs.

9.0 PREFERRED ALTERNATIVE

Based on the evaluation of the alternatives with respect to the threshold and balancing criteria, the preferred alternative includes removal of the lead-contaminated soil at the former KD Ranges 1 and 2 (Figure 4). This alternative will achieve the RAOs for the site while providing the best balance with respect to the CERCLA evaluation criteria.

The removal alternative consists of excavating the contaminated surface soil and transporting it to a permitted landfill for disposal. Prior to excavation, each of the range sections will be subdivided into grid panels for excavation. The grid panels will be laid out in a pre-determined grid pattern across and along the length of the berm. Composite surface soil samples will be taken from each of the grid panels along the length of the impact berm in the three range sections and field screened so as to better define the limits of excavation. Composite samples may be collected using incremental sampling or other methods to characterize the soil. Samples will be analyzed for lead.

Surface vegetation (trees and shrubs) will be removed over an area of approximately 2 acres to allow for soil excavation. Contaminated surface soil (exceeding the remediation level of 900 mg/kg) will be excavated using conventional excavation equipment such as excavators, track loaders, and bulldozers. Soil in each excavation grid panel will be excavated from the top of the berm to the bottom of the berm. Because lead is relatively immobile in the soil at the site, the soil will be excavated in relatively thin lifts as standard construction equipment will allow. Once an area has been excavated, a composite sample will be taken from each excavation grid panel to confirm that sufficient depth of soil has been removed to achieve the 900-mg/kg remediation level. If the base of the excavated grid panel exceeds the remediation level, then an additional grid panel will be excavated and sampled.

Results of Toxicity Characteristic Leaching Procedure (TCLP) testing will be used to determine whether the excavated soil is characteristic hazardous waste. The maximum TCLP concentration of lead for this toxicity characteristic is 5 mg/L (40 CFR 261.24). Waste soil will be transported to a permitted facility. All shipments will be accompanied by appropriate waste manifests.

Once the lead-contaminated soil has been removed, the 2-acre site will be restored by regrading to promote drainage, adding topsoil or soil amendments as required to promote vegetation growth, and seeding and mulching to establish surface vegetation. Removal of the soil will be a permanent remedy; therefore, 5-year reviews will not be required to ensure that the remedy continues to be effective.

Based on information currently available, the lead agency believes the Preferred Alternative meets the threshold criteria and provides the best balance of tradeoffs among the other alternatives with respect to the balancing and modifying criteria. The USACE – Mobile District expects the Preferred Alternative to satisfy the following statutory requirements of CERCLA §121(b): (1) be protective of human health and the environment; (2) comply with ARARs (or justify a waiver); (3) be cost-effective; and (4) utilize permanent solutions and alternative treatment technologies or resource recovery technologies to the maximum extent practicable.
Figure 4. Soil Sampling and Removal Under the Preferred Alternative
The statutory requirements of CERCLA §121(b) indicate the preference for treatment as a principal element. There are few technologies available for on-site treatment of soil contaminated with metals, one of which is soil washing. The cost-effectiveness of this technology would be very limited due to the high fines content (clay soil) and low volume of contaminated soil, thus resulting in higher costs to implement this technology. However, if the excavated soil is a hazardous waste based on toxicity, treatment will occur at the TSDF to stabilize or encapsulate the soil prior to disposal in the landfill since land disposal restrictions for lead-contaminated soil require the reduction of toxicity prior to disposal.

10.0 COMMUNITY PARTICIPATION

Information regarding the cleanup at the KD Range at former Camp Sibert is provided to the public by submitting information and documents to property owners, the Administrative Record file for the site, and announcements published in the Gadsden Times newspaper. The public is encouraged to refer to these sources to stay informed on issues pertaining to the restoration activities.

In accordance with the NCP, an Administrative Record file has been established for the former Camp Sibert. The contents of the file include a variety of written material, such as pieces of correspondence, data reports, assessments, plans, newspaper articles, notices, and fact sheets. The Administrative Record files are located at the Mobile District Office, 109 St. Joseph Street, Mobile, Alabama, the Gadsden Public Library, 254 College Street, Gadsden, Alabama and on the web at http://www.sam.usace.army.mil/Camp_Sibert

USACE and ADEM are soliciting input from the community on this Proposed Plan for the site. The comment period will extend from March 5, 2012 through April 4, 2012. Written comments must be postmarked no later than the last day of the public comment period, which is April 4, 2012.

At the conclusion of the comment period, a public meeting to present the proposed plan and to answer questions relevant to the proposed plan will be held. Following the public meeting, the comments received on this Proposed Plan will be summarized and responses provided in the Responsiveness Summary section of the ROD. The ROD will present the final selected remedy for the site.

11.0 REFERENCES (AVAILABLE IN THE ADMINISTRATIVE RECORD)

SAIC 2008b. Focused Feasibility Study for the Former Known-Distance Range, Former Camp Sibert, Gadsden, Alabama, FUDS Number: I04AL005701, Revised Final, September.

SAIC 2009. Addendum to the Focused Feasibility Study for the Former Known-Distance Range, Former Camp Sibert, Gadsden, Alabama, FUDS Number: I04AL005701, Final, June.

12.0 GLOSSARY OF TERMS

Administrative Record: a collection of documents, typically reports and correspondence, generated during site investigation and remedial activities. Information in the Administrative Record represents the information used to select the preferred alternative. It is available for public review at the U.S. Army Corps of Engineers, Mobile District Office, 109 St. Joseph Street, Mobile, Alabama, and on the web at http://www.sam.usace.army.mil/Camp_Sibert

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA): a federal law passed in 1980, commonly referred to as the Superfund Program. It provides liability, compensation, cleanup, and emergency response in connection with the cleanup of inactive hazardous substance release sites that endanger public health or the environment.
Constituent of Concern (COC): site-specific chemical substance that potentially poses significant human health or ecological risks. COCs are typically further evaluated for remedial action.

Ecological Receptor: a plant, animal, or ecosystem exposed to an adverse condition.

Focused Feasibility Study (FFS): a feasibility study that evaluates the remedial alternatives for a specific portion of a CERCLA site or a limited number of remedial technologies based on types of contaminants and prior studies for similar sites and contaminants.

Human Receptor: a hypothetical person, based on current or potential future land use, that may be exposed to an adverse condition.

National Oil and Hazardous Substances Pollution Contingency Plan (NCP): compiled of regulations that implement CERCLA and address responses to hazardous substances and pollutants or contaminants.

Record of Decision (ROD): legal record signed by the U. S. Army Corps of Engineers coordinated with the Alabama Department of Environmental Management. It describes the cleanup action or remedy selected for a site, the basis for selecting that remedy, public comments, responses to comments, and the estimated cost of the remedy.

Remedial Investigation (RI): CERCLA investigation that involves sampling environmental media, such as air, soil, and water, to determine the nature and extent of contamination and to calculate human health and environmental risks that result from the contamination.

Responsiveness Summary: a section of the ROD where the U. S. Army Corps of Engineers documents and responds to written and oral comments received from the public about the Proposed Plan.

Risk Assessment: an evaluation that determines potential harmful effects, or lack thereof, posed to human health and the environment due to exposure to chemicals found at a CERCLA site.
USE THIS SPACE TO WRITE YOUR COMMENTS

Your input on the Proposed Plan for the former Known-Distance Range at the former Camp Sibert is important to the U. S. Army Corps of Engineers and the Alabama Department of Environmental Management. Comments provided by the public are valuable in helping select a final cleanup remedy for the site.

You may use the space below to write your comments, then fold and mail to

Melissa L. Shirley, P.E.
U. S. Army Corps of Engineers, Mobile District
Attn: EN-GE
P.O. Box 2288
Mobile, AL 36628

Comments must be postmarked by April 4, 2012. If you have any questions about the comment period, please contact Melissa Shirley at (251) 690-2616 or toll free 1-800-543-2010 extension 2616. Those with electronic communication capabilities may submit their comments to the U. S. Army Corps of Engineers via Internet at the following e-mail address: melissa.l.shirley@usace.army.mil.

Name: __
Address: ___
City: ___________________________ State: _______ Zip: ____________